Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20239944

ABSTRACT

Introduction: Variants in PPP1R13L are associated with severe childhood-onset cardiomyopathy resulting in rapid progression to death or cardiac transplantation. PPP1R13L is proposed to encode a protein that limits the transcriptional activity of the NFkappaB pathway leading to elevated IL-1, IL-6, and TNF-alpha production in murine models. Optimal medical management for PPP1R13L-related cardiomyopathy is unknown. Here we report usage of a targeted anti-IL-1 immuno-modulatory therapy resulting in cardiac stabilization in a pediatric patient with congenital cardiomyopathy secondary to PPP1R13L variants. Case Report: A 4-year-old boy presented acutely with fever in the setting of persistent abdominal pain, vomiting, fatigue, and decreased appetite for two months following a mild COVID-19 related illness. Echocardiogram revealed severely depressed biventricular systolic function with an ejection fraction of 30%. Due to acute decompensated heart failure symptoms with hemodynamic instability, he was intubated and placed on continuous inotropic infusions with aggressive diuresis. Cardiac MRI demonstrated extensive subepicardial to near transmural fibrosis by late gadolinium enhancement in right and left ventricles. An implantable cardioverter-defibrillator (ICD) was placed due to frequent runs of polymorphic non-sustained ventricular tachycardia. Testing for viral pathogens was positive for rhino/enterovirus. Initial genetic testing was non-diagnostic (82-gene cardiomyopathy panel) but given the patient's significant presentation whole genome sequencing was pursued that showed two separate PPP1R13L variants in trans (c.2167A>C,p.T723P and c.2179_2183del,p. G727Hfs*25, NM_006663.4). Patient serum cytokine testing revealed elevations in IL-10 (4.7 pg/mL) and IL-1beta (20.9 pg/mL). Given the patient's tenuous circumstances and concern for continued progression of his cardiac disease, a trial of IL-1 inhibition via anakinra dosed at 3 mg/kg or 45 mg daily was initiated following hospital discharge. With approximately 6 months of therapy, the patient's cardiac function is stable with normalization of IL-10 and IL-1beta serum levels. Notably, the ventricular arrhythmia decreased after initiation of anakinra with no ICD shocks given. Therapy overall has been well tolerated without infectious concerns. Conclusion(s): In patients with PPP1R13L-related cardiomyopathy, immuno-modulatory therapies should be considered in an attempt to slow cardiac disease progression.Copyright © 2023 Elsevier Inc.

2.
American Journal of Gastroenterology ; 117(10 Supplement 2):S1341-S1342, 2022.
Article in English | EMBASE | ID: covidwho-2323964

ABSTRACT

Introduction: Acute pancreatitis affects a significant population globally. Usual etiologies are gallstones, alcohol, hypertriglyceridemia, medications;less frequent are trauma, hypercalcemia, infections, toxins, ischemia, anatomic anomalies, vasculitis, and idiopathic. Pancreatitis post coronary intervention is an uncommon cause with only 19 published cases in the last two decades. Being cognizant of this etiology is important given the increasing number of patients undergoing angiography. Case Description/Methods: An 81-year-old female with hypertension, diabetes, peripheral arterial disease, prior cholecystectomy underwent left lower extremity angioplasty at an outside center. Within a few hours, she started having severe epigastric pain radiating to her back, nausea, vomiting and loose bloody stool. She presented to the emergency department 24 hours after symptom onset. Epigastric tenderness was present on exam. Labs revealed leukocytosis (24,450/muL), elevated lipase (1410 U/L), elevated creatinine (1.3 mg/dL), lactate (3.1 mmol/L), calcium 9.4 mg/dL and triglycerides 161 mg/dL. Incidentally, found to be positive for COVID-19. Normal common bile duct diameter seen on sonogram. CT angiogram of the abdomen/pelvis showed acute pancreatitis, duodenal and central small bowel enteritis (Figure). She was not on any medications known to cause pancreatitis and denied alcohol use. Patient improved with analgesics and intravenous fluids. She had no recurrence of bloody stools and hemoglobin remained stable. On day 4, she was able to tolerate a regular diet, and leukocyte count and creatinine normalized. Patient did not have any COVID respiratory symptoms, and was discharged. Discussion(s): Given the temporal association to angioplasty and no other identifiable cause, acute pancreatitis was presumed to be due to the contrast used during angioplasty. Other possibilities included cholesterol embolism but no peripheral signs of cholesterol embolism were seen. Patient was an asymptomatic COVID-19 case. Although, there are case series of pancreatitis due to COVID, those were found in very sick symptomatic patients. On review of literature, cholesterol embolism was identified as a definite cause only on autopsy or laparotomy (Table). Other possible mechanisms are: high viscosity of the contrast media leading to ischemia and necrosis, contrast causing NF-kB activation followed by epithelial damage, and vasospasm. Pancreatitis after coronary angiography is rare, nonetheless, an important differential especially if there is a temporal relationship.

3.
Infektsionnye Bolezni ; 20(4):12-24, 2022.
Article in Russian | EMBASE | ID: covidwho-2317647

ABSTRACT

Neutrophilic granulocytes (NG) are the main drivers of pathological inflammation in COVID-19. Objective. To specify the mechanisms of immunopathogenesis of COVID-19 based on a comparative immunological study of the number and phenotype of CD16+SD62L+CD11b+CD63- and CD16+SD62L+CD11b+CD63+ subsets with an assessment of their effector functions against changing profile of NG-associated cytokines IL-8, IL-18, IL-17A, VEGF-A, IFNalpha, and IFNgamma. Patients and methods. In patients with moderate-to-severe and severe COVID-19, we determined IL-1beta, TNFalpha, IL-6, IL-8, IL-18, IL-17A, VEGF-A, IFNalpha, and IFNgamma (ELISA), the phenotype of CD16+SD62L+CD11b+CD63- and CD16+SD62L+CD11b+CD63+ subsets, NF-kappaB-NG (CYTOMICS FC500), phagocytically active NG (%), neutrophil extracellular traps (NETs), NG in apoptosis, and the activity of NADPH oxidase. Results. In COVID-19 against the background of IFNalpha and IFNgamma production blockade and high levels of NG-associated IL-8, IL-18, IL-17A, VEGF-A, a reduction in the number of mature and functionally active CD16brightSD62LbrightCD11bbrightCD63-NG subsets was revealed, as well as an increase in the number of CD16dimSD62LdimSD11bbrightCD63-NG subsets with an immunosuppressive phenotype and CD16brightSD62LbrightSD11bbrightCD63bright-NG subsets with high cytotoxic activity and ability to form NETs, a decrease in the percentage of phagocytically active NG and an increase in the activity of NADPH oxidase, NETs, and NG in apoptosis. Conclusion. IFNalpha deficiency provokes a hyperergic response of NG-associated cytokines, which leads to the formation of uncontrolled immune inflammation involving NG subsets with an immunosuppressive and cytotoxic phenotype, exacerbating the course of COVID-19. The use of recombinant IFNalpha-2b with antioxidants (Viferon) in the early stages of the disease can help to restore immune homeostasis, normalize the level of NG-associated cytokines, reduce NERTs, and achieve good clinical efficacy.Copyright © 2022, Dynasty Publishing House. All rights reserved.

4.
Natural Product Communications ; 18(4), 2023.
Article in English | EMBASE | ID: covidwho-2316742

ABSTRACT

Background: Viral infections pose some of the most serious human health concerns worldwide. The infections caused by several viruses, including coronavirus, hepatitis virus, and human immunodeficiency virus, are difficult to treat. Method(s): This review details the findings of a literature search performed on the antiviral properties of luteolin. The keywords engaged in the search are "virus" along with "luteolin." Results: Luteolin possesses antiviral properties, which is the basis for the current review. It is an important natural flavonoid with numerous important biological properties, including anti-inflammatory, immune regulatory, and antitumor effects, and is found in vegetables, fruits, and several medicinal plants. Recent studies have revealed that many traditional Chinese medicines that contain luteolin inhibit the replication of coronaviruses. Conclusion(s): Luteolin effectively inhibits the replication of coronavirus, influenza virus, enterovirus, rotavirus, herpes virus, and respiratory syncytial virus, among others. In particular, it prevents viral infection by improving the body's nonspecific immunity and antioxidation capacity and inhibiting many pathways related to virus infection and replication, such as MAPK, PI3K-AKT, TLR4/8, NF-kappaB, Nrf-2/hemeoxygenase-1, and others. It also regulates the expression of some receptors and factors, including hepatocyte nuclear factor 4alpha, p53, NLRP3, TNF-alpha, and interleukins, thereby interfering with the replication of viruses in cells. Luteolin also promotes the repair of damaged cells induced by proinflammatory factors by regulating the expression of inflammatory molecules. The overall effect of these processes is the reduction in viral replication and, consequently, the viral load. This review summarizes the antiviral effect of luteolin and the mechanism underlying this property.Copyright © The Author(s) 2023.

5.
Neural Regeneration Research ; 18(1):38-46, 2023.
Article in English | EMBASE | ID: covidwho-2313974

ABSTRACT

Obesity is associated with several diseases, including mental health. Adipose tissue is distributed around the internal organs, acting in the regulation of metabolism by storing and releasing fatty acids and adipokine in the tissues. Excessive nutritional intake results in hypertrophy and proliferation of adipocytes, leading to local hypoxia in adipose tissue and changes in these adipokine releases. This leads to the recruitment of immune cells to adipose tissue and the release of pro-inflammatory cytokines. The presence of high levels of free fatty acids and inflammatory molecules interfere with intracellular insulin signaling, which can generate a neuroinflammatory process. In this review, we provide an up-to-date discussion of how excessive obesity can lead to possible cognitive dysfunction. We also address the idea that obesity-associated systemic inflammation leads to neuroinflammation in the brain, particularly the hypothalamus and hippocampus, and that this is partially responsible for these negative cognitive outcomes. In addition, we discuss some clinical models and animal studies for obesity and clarify the mechanism of action of anti-obesity drugs in the central nervous system.Copyright © 2023 Wolters Kluwer Medknow Publications. All rights reserved.

6.
Health Biotechnology and Biopharma ; 4(3):1-5, 2020.
Article in English | EMBASE | ID: covidwho-2301984

ABSTRACT

Late in 2019, the novel coronavirus disease (COVID-19) became pandemic. The disease has associated with severe inflammatory symptoms of the respiratory epithelial cells and the dysfunction of several organs of the body. Studies have shown that theophylline plays an important role in acute inflammation and has a synergistic effect on low therapeutic concentrations with corticosteroid drugs and amplifies anti-inflammatory effect of corticosteroids by activating histone deacetylase-2 (HDAC2), which decreases corticosteroid resistance by increasing the affinity of corticosteroid receptors to corticosteroid drugs. Therefore, theophylline could be considered as an adjunctive anti-inflammatory drug in combination with corticosteroids in the treatment of patients with COVID-19.Copyright © 2020 by the Author(s).

7.
Neuroendocrinology Letters ; 42(1):13-21, 2021.
Article in English | EMBASE | ID: covidwho-2299689

ABSTRACT

OBJECTIVES: The beneficial effects of ozone therapy consist mainly of the promotion of blood circulation: peripheral and central ischemia, immunomodulatory effect, energy boost, regenerative and reparative properties, and correction of chronic oxidative stress. Ozone therapy increases interest in new neuroprotective strategies that may represent therapeutic targets for minimizing the effects of oxidative stress. METHOD(S): The overview examines the latest literature in neurological pathologies treated with ozone therapy as well as our own experience with ozone therapy. The effectiveness of treatments is connected to the ability of ozone therapy to reactivate the antioxidant system to address oxidative stress for chronic neurodegenerative diseases, strokes, and other pathologies. Application options include large and small autohemotherapy, intramuscular application, intra-articular, intradiscal, paravertebral and epidural, non-invasive rectal, transdermal, mucosal, or ozonated oils and ointments. The combination of different types of ozone therapy stimulates the benefits of the effects of ozone. RESULT(S): Clinical studies on O2-O3 therapy have been shown to be efficient in the treatment of neurological degenerative disorders, multiple sclerosis, cardiovascular, peripheral vascular, orthopedic, gastrointestinal and genitourinary pathologies, fibromyalgia, skin diseases/wound healing, diabetes/ulcers, infectious diseases, and lung diseases, including the pandemic disease caused by the COVID-19 coronavirus. CONCLUSION(S): Ozone therapy is a relatively fast administration of ozone gas. When the correct dose is administered, no side effects occur. Further clinical and experimental studies will be needed to determine the optimal administration schedule and to evaluate the combination of ozone therapy with other therapies to increase the effectiveness of treatment.Copyright © 2021 Neuroendocrinology Letters.

8.
Allergy: European Journal of Allergy and Clinical Immunology ; 78(Supplement 111):323, 2023.
Article in English | EMBASE | ID: covidwho-2298160

ABSTRACT

Background: Congenital/primary immunodeficiency (PID) affects about 6 million people worldwide, about 50% of whom are antibody deficient. During the COVID-19 pandemic, these people are at special risk because they have inborn errors of immunity and immune defense against infections. A number of immune mediators, in particular serum levels of interleukin 6 (IL-6), are closely correlated with severity and mortality from COVID-19. Method(s): The clinical course of COVID-19 and IL-6 levels in 14 patients with PID were studied. The age of patients ranged from 18 to 46 years. Among 14 patients with PID, 5 were diagnosed with common variable immunodeficiency (CVID), 4 with IgG4 deficiency, 4 with X-linked agammaglobulinemia (XLA), and 1 with WHIM syndrome. All patients with PID received replacement immunoglobulin therapy. The control group was randomly selected from 25 patients with COVID-19 without immune deficiency disease. The level of IL-6 was determined by ELISA. Result(s): Among 14 patients with PID, 10 patients (71.4%) had mild COVID-19 and 4 patients (28.57%) had moderate COVID-19. Importantly, all 4 patients with IgG4 deficiency, 1 patient with WHIM syndrome, 3 out of 5 patients with CVID, and 2 out of 4 patients with XLA had mild COVID-19. It should be noted that the clinical course and level of IL-6 in all patients with PID and control group did not differ statistically. Conclusion(s): More than 70% of patients with congenital antibody deficiencies had a mild form of COVID-19. The predominantly mild course of COVID-19 confirms the important role of cellular immunity in protecting against SARS Cov-2. Interestingly, all patients with XLA experienced mild or moderate COVID-19 without elevated IL-6 levels likely due to decreased activity of Bruton tyrosine kinase, which mediates development of a cytokine storm through activation of NF-kappabeta. Mild forms of COVID-19 in XLA may reflect a decrease in cytokine storm, in particular IL-6 production.

9.
Iranian Journal of Blood and Cancer ; 14(4):125-139, 2022.
Article in English | EMBASE | ID: covidwho-2296263

ABSTRACT

The common reported adverse impacts of COVID-19 vaccination include the injection site's local reaction followed by various non-specific flu-like symptoms. Nevertheless, uncommon cases of vaccine-induced immune thrombotic thrombocytopenia (VITT) and cerebral venous sinus thrombosis (CVST) following viral vector vaccines (ChAdOx1 nCoV-19 vaccine, Ad26.COV2 vaccine) have been reported. This literature review was performed using PubMed and Google Scholar databases using appropriate keywords and their combinations: SARS-CoV-2, adenovirus, spike protein, thrombosis, thrombocytopenia, vaccine-induced immune thrombotic thrombocytopenia (VITT), NF-kappaB, adenoviral vector, platelet factor 4 (PF4), COVID-19 Vaccine, AstraZeneca COVID vaccine, ChAdOx1 nCoV-19 COVID vaccine, AZD1222 COVID vaccine, coagulopathy. The s and titles of each article were assessed by authors for screening and inclusion English reports about post-vaccine CVST and VITT in humans were also collected. Some SARS-CoV-2 vaccines based on viral vector, mRNA, or inactivated SARS-CoV-2 virus have been accepted and are being pragmatic global. Nevertheless, the recent augmented statistics of normally very infrequent types of thrombosis associated with thrombocytopenia have been stated, predominantly in the context of the adenoviral vector vaccine ChAdOx1 nCoV-19 from Astra Zeneca. The numerical prevalence of these side effects seems to associate with this particular vaccine type, i.e., adenoviral vector-based vaccines, but the meticulous molecular mechanisms are still not clear. The present review summarizes the latest data and hypotheses for molecular and cellular mechanisms into one integrated hypothesis demonstrating that coagulopathies, including thromboses, thrombocytopenia, and other associated side effects, are correlated to an interaction of the two components in the COVID-19 vaccine.Copyright © 2022, Iranian Pediatric Hematology and Oncology Society. All rights reserved.

10.
Human Gene ; 36 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2296239

ABSTRACT

COVID-19 has been found to affect the expression profile of several mRNAs and miRNAs, leading to dysregulation of a number of signaling pathways, particularly those related to inflammatory responses. In the current study, a systematic biology procedure was used for the analysis of high-throughput expression data from blood specimens of COVID-19 and healthy individuals. Differentially expressed miRNAs in blood specimens of COVID-19 vs. healthy specimens were then identified to construct and analyze miRNA-mRNA networks and predict key miRNAs and genes in inflammatory pathways. Our results showed that 171 miRNAs were expressed as outliers in box plot and located in the critical areas according to our statistical analysis. Among them, 8 miRNAs, namely miR-1275, miR-4429, miR-4489, miR-6721-5p, miR-5010-5p, miR-7110-5p, miR-6804-5p and miR-6881-3p were found to affect expression of key genes in NF-KB, JAK/STAT and MAPK signaling pathways implicated in COVID-19 pathogenesis. In addition, our results predicted that 25 genes involved in above-mentioned inflammatory pathways were targeted not only by these 8 miRNAs but also by other obtained miRNAs (163 miRNAs). The results of the current in silico study represent candidate targets for further studies in COVID-19.Copyright © 2023 Elsevier B.V.

11.
Health Biotechnology and Biopharma ; 6(2):78-80, 2022.
Article in English | EMBASE | ID: covidwho-2294397

ABSTRACT

Ectodermal dysplasia (ED) is a rare heterogeneous disorder. Defects in the development of the ectoderm cause symptoms in tissues derived from the ectoderm layer such as skin, nails and hair. One of the genes involved in ED is Nuclear Factor Kappa-B (NF-kappaB) that mutation in this gene causes immunodeficiency. There are also some ED subgroups such as X-Link Hypohidrotic Ectodermal Dysplasia (XLHED) at risk of severe pneumonia and respiratory infections. The patients with ED due to the susceptibility of the immune system defect as well as the respiratory system, we hypothesized that these patients are sensitive to COVID -19. So the main organ involved in the respiratory system and the main cause of mortality in patients with COVID-19 is the respiratory system involvement. Therefore, they are at higher risk of developing symptomatic COVID-19 that requires further clinical care.Copyright © 2022, Health Biotechnology and Biopharma.

12.
Pharmacological Research - Modern Chinese Medicine ; 2 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2269814

ABSTRACT

Background: SARS-CoV-2 has led to a sharp increase in the number of hospitalizations and deaths from pneumonia and multiorgan disease worldwide;therefore, SARS-CoV-2 has become a global health problem. Supportive therapies remain the mainstay treatments against COVID-19, such as oxygen inhalation, antiviral drugs, and antibiotics. Traditional Chinese medicine (TCM) has been shown clinically to relieve the symptoms of COVID-19 infection, and TCMs can affect the pathogenesis of SARS-CoV-2 infection in vitro. Jing Si Herbal Drink (JSHD), an eight herb formula jointly developed by Tzu Chi University and Tzu Chi Hospital, has shown potential as an adjuvant treatment for COVID-19 infection. A randomized controlled trial (RCT) of JSHD as an adjuvant treatment in patients with COVID-19 infection is underway Objectives: This article aims to explore the efficacy of the herbs in JSHD against COVID-19 infection from a mechanistic standpoint and provide a reference for the rational utilization of JSHD in the treatment of COVID-19. Method(s): We compiled evidence of the herbs in JSHD to treat COVID-19 in vivo and in vitro. Result(s): We described the efficacy and mechanism of action of the active ingredients in JSHD to treat COVID-19 based on experimental evidence. JSHD includes 5 antiviral herbs, 7 antioxidant herbs, and 7 anti-inflammatory herbs. In addition, 2 herbs inhibit the overactive immune system, 1 herb reduces cell apoptosis, and 1 herb possesses antithrombotic ability. Conclusion(s): Although experimental data have confirmed that the ingredients in JSHD are effective against COVID-19, more rigorously designed studies are required to confirm the efficacy and safety of JSHD as a COVID-19 treatment.Copyright © 2021

13.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2268922

ABSTRACT

As hyperbaric oxygen (HBO) has been shown to mitigate the COVID-19 symptoms, we were interested in studying whether HBO exposure affects expression of viral entry genes and innate immune genes in the air-liquid interface (ALI)-cultured human bronchial epithelial cells (HBECs) derived from normal individuals (NHBECs) and age-matched COPD patients (DHBECs), which were cultured under normoxia or daily exposure of 40-min hyperbaric oxygen (HBO) with 100% O2 at 2.5 ATA for 28 days in total. We found for the first time that HBO exposure differentially regulated mucociliary differentiation of HBECs by respectively decreasing and increasing expression of CGRP, MUC5AC, FOXJ1, NOTCH3 and HEYL in NHBECs and DHBECs, and respectively decreased and increased FOXO1 expression whereas increased and decreased NFE2L2 and NFKB1 expression in NHBECs and DHBECs, in association with respectively decreased and increased expression the SARS-CoV-2 entry genes ACE2 and 2 TMPRSS2 and the tight junction protein genes TJP1 and TJP2, and in association with respectively increased and decreased expression of the cell growth and inflammatory transcription factors SRF, c-FOS and TP63, as well as the TLR pathway genes TLR3, AKT1, IL-1B, IL-5, IL-6, IL-33, IRAK4 and NFKBIA in NHBECs and DHBECs. (Figure Presented).

14.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2262554

ABSTRACT

Background: Rhinovirus is the most common trigger for exacerbations of asthma. Alveolar macrophages (AM) are a major site of RV infection and can also be infected by SARS-CoV-2. The pandemic caused by the SARS-CoV-2 raised concerns that patients with severe asthma (SA) would be at particularly high risk of developing severe disease. To date, evidence for poor outcomes in asthma remains limited suggesting a differential immune response to these two viruses. Method(s): Alveolar macrophages (AM) were isolated from bronchoalveolar lavage samples from patients with SA and infected with RV (n=13), SARS-CoV-2 alpha (B.1.1.7) (n=9) and delta (B.1.627.2)(n=8) variants. Antiviral mediators representing NF-KB-induced interferon-driven mRNAs (IL6 and IL8, RIGI and MDA5, respectively) were measured by qPCR, normalised to GAPDH and compared between infected AM and controls. Result(s): RV infected AM showed significant increases in mRNA expression of RIGI (4.39 fold change +/-4.68, p<0.001 vs control), MDA5 (2.96 fold change +/- 2.93, p=0.002 vs control) and IL6 (1.88 fold change +/- 0.98, p=0.006) compared to AM treated with control media alone, whilst IL8 did not significantly change. However, AM infected with SARS-CoV-2 alpha or delta variants showed no difference in levels of antiviral mediators compared to controls. Longitudinal analysis of AMs infected with SARS-CoV-2 alpha or delta variants showed no antiviral response. Conclusion(s): AM from subjects with severe asthma produce a pattern of anti-viral responses following RV infection that is absent when exposed to SARS-CoV-2 variants currently in circulation.

15.
Chinese Journal of Applied Clinical Pediatrics ; 35(2):118-124, 2020.
Article in Chinese | EMBASE | ID: covidwho-2261414

ABSTRACT

2019-novel coronavirus (2019-nCoV) is a highly pathogenic human CoV that first emerged in Wuhan in 2019. 2019-nCoV has a zoonotic origin and poses a major threat to public health. However, little is known about the viral factors contributing to the high virulence of 2019-nCoV. Many animal viruses, including CoVs, encode proteins that interfere with host gene expression, including those involved in antiviral immune responses, and these viral proteins are often major virulence factors. Human coronaviruses (HCoVs) are known respiratory pathogens associated with a range of respiratory infection. In the past 17 years, the onset of 2019-nCoV, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have thrust HCoVs into spotlight of the research community due to their high pathogenicity in humans. The recent study of HCoVs-host interactions has contributed extensively to our understanding of infection pathogenesis of 2019-nCoV. This review discuss various host physiopathologic mechanism, such as apoptosis, innate immunity, endoplasmic reticulum (ER) stress response, mitogen-activated protein kinase (MAPK) pathway and nuclear factor kappa B (NF-kappaB) pathway that may be modulated by HCoVs and provides evidence for the intensive investigate of 2019-nCoV infection.Copyright © 2020 by the Chinese Medical Association.

16.
Coronaviruses ; 3(6) (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2254520

ABSTRACT

Background: Novel coronavirus pneumonia COVID-19 has become a serious threat to human health. Traditional Chinese Medicine (TCM) has a good clinical effect in the treatment of COVID-19, with a high effective rate and a low rate of turning to the serious stage. Objective(s): We generated the web-accessed anti-COVID-19 TCM database to provide the anti-COVID-19 TCM information to develop effective drugs for the treatment of COVID-19. Method(s): Herein, we collected these prescriptions data by querying the CNKI and Wanfang Chinese da-tabases, the clinical guidance for COVID-19 pneumonia diagnosis and treatment, and further set up the web-accessible anti-COVID-19 TCM database. Result(s): Altogether, 293 different prescriptions are applied in four different COVID-19 stages of treat-ment, and the prevention of COVID-19 is composed of 452 TCM components. Conclusion(s): The database provides comprehensive information for anti-COVID TCM and thus would help to investigate novel ways to develop new anti-COVID-19 agents.Copyright © 2022 Bentham Science Publishers.

17.
Indian Journal of Clinical Biochemistry ; 37(Supplement 1):S38, 2022.
Article in English | EMBASE | ID: covidwho-2287332

ABSTRACT

Vitamin D, a fat-soluble vitamin helps the body to absorb and retain calcium and phosphorus.Apart from this primary activity, it exhibits potent antimicrobial and antiinflammatory effects viaimmune-modulatory properties. Vitamin D has shown inhibitory effects on the production of pro-inflammatory cytokines, including TNF-alpha and IL- 6, by various mechanisms, includingdown-regulating viralinduced NFkB activation So, this present study aimed to study the relations of serum calcium, phosphorus and Vitamin D levels in association with severity and mortality in SARSCoV- 2 patients. A total of 150 individuals infected with COVID-19 and 50 healthy individuals were recruited. Cases were divided based on severity (mild, moderate and severe) and outcome (discharged or deceased). Serum Ca, Po4, and ALP were analysed by the direct colourimetric method. Vitamin D was measured using the chemiluminescent immunoassay (CLIA). The median serum calcium, Phosphorus, ALP and vitamin D levels in COVID 19 patients were 8.02 mgldL (IQR, 7.24-8.71), 3.93 mgldL (IQR, 2.97- 4.36), 115 IU/L(IQR, 94-146) and 17.2 ng/mL (IQR, 11.6- 25.9) respectively. On comparing the different severity groups a significant difference was found in Vitamin D (p<0.002), ALP (p<0.00001) and calcium (p<0.0001). The serum calcium levels were significantly positively correlated with Vitamin D levels and negative correlation with the inflammatory markers like IL-6. Similarly, patients with low calcium and vitamin D were found to have a fatal outcome. 838 The multivariable analysis showed that a combination of low calcium and vitamin D with higher age are associated with mortality in COVID-19 patients. Serum calcium and Vitamin D were associated with the clinical severity and prognosis of patients with COVID-19.

18.
Journal of Hypertension ; 41:e46-e47, 2023.
Article in English | EMBASE | ID: covidwho-2243455

ABSTRACT

Objective: COVID-19 association with cardiovascular disease is thought to be due to endothelial cell inflammation. ACE2 interactions with SARS-CoV-2 spike protein S1 subunit is important to viral infection. Here we questioned whether SARS-CoV-2 induces vascular inflammation via ACE2 and whether this is related to viral infection. Design and Methods: Human microvascular endothelial cells (EC) were exposed to recombinant S1p (rS1p) 0.66 ug/mL for 10 min, 5 h and 24 h. Gene expression was assessed by RT-PCR and levels of IL6 and MCP1, as well as ACE2 activity, were assessed by ELISA. Expression of ICAM1 and PAI1 was assessed by immunoblotting. ACE2 activity was blocked by MLN4760 (ACE2 inhibitor) and siRNA. Viral infection was assessed by exposing Vero E6 (kidney epithelial cells;pos ctl) and EC to 105 pfu of SARS-CoV-2 where virus titre was measured by plaque assay. Results: rS1p increased IL6 mRNA (14.2 ± 2.1 vs. C:0.61 ± 0.03 2-ddCT) and levels (1221.2 ± 18.3 vs. C:22.77 ± 3.2 pg/mL);MCP1 mRNA (5.55 ± 0.62 vs. C:0.65 ± 0.04 2-ddCT) and levels (1110 ± 13.33 vs. C:876.9 ± 33.4 pg/mL);ICAM1 (17.7 ± 3.1 vs. C:3.9 ± 0.4 AU) and PAI1 (5.6 ± 0.7 vs. C: 2.9 ± 0.2), p < 0.05. MLN4760, but not rS1p, decreased ACE2 activity (367.4 ± 18 vs. C: 1011 ± 268 RFU, p < 0.05) and blocked rS1p effects on ICAM1 and PAI1. ACE2 siRNA blocked rS1p-induced IL6 release, ICAM1, and PAI1 responses as well as rS1p-induced NFkB activation. EC were not susceptible to SARS-CoV-2 infection, while the virus replicated well in Vero E6. Conclusion: rS1p induces an inflammatory response through ACE2 in endothelial cells;an effect that was independent of viral infection.

19.
American Journal of Transplantation ; 22(Supplement 3):350, 2022.
Article in English | EMBASE | ID: covidwho-2063347

ABSTRACT

Purpose: Exosomes are small vesicles which are released by cells into body fluids. We have demonstrated the presence of circulating exosomes with viral antigens in lung transplant recipients (LTxRs) diagnosed with respiratory viral infections. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection results Covid-19 disease and SARS-CoV2 infection of LTxRs can be severe with poor clinical outcomes. The goal of this single center study is to determine the development of antibody responses specific to SARS-CoV2 in LTxRs, characterize the immune and molecular markers in the circulating exosomes induced and its role in eliciting immunity. Method(s): To determine that antibody responses and induction of circulating exosomes we enrolled LTxRs with SARS-CoV2 infection (n=50), following 2 doses of vaccination (n=100). Exosomes were isolated from plasma by exosome precipitation kit followed by 0.2 micron filtration and size determination by NanoSight300. Exosomes were subjected to transmission electron microscopy for spike (CSP) and nucleocapsid (CNP) antigens. Exosomes were also characterized by western blot for immune and molecular markers (NFkB, CIITA, 20S proteasome, beta catenin and VWF). C57BL/6 mice were immunized with circulating exosomes isolated from LTxRs with infection. Result(s): 78% of SARS-CoV2 infected LTxRs developed antibodies to CSP and CNP as opposed to normal infected individuals. In contrast, only 55% vaccinated LTxRs developed antibodies to SARS-CoV2 spike. Exosomes from SARS-CoV2 infected and vaccinated individuals contained CSP S2, CNP and immune and molecular markers. Transmission electron microscopy also revealed the presence of CSP and CNP on exosomes. C57BL/6 mice immunized with exosomes carrying CSP developed antibodies to SARS-CoV2 spike antigens. Severe inflammation and lung lesions were also demonstrated in the lungs of mice immunized with exosomes carrying CSP. Conclusion(s): In conclusion, we demonstrated that SARS-CoV2 infected and vaccinated LTxRs induced circulating exosomes with SARS-CoV2 CSP. In addition, exosomes contained important immune activating molecules suggesting that the exosomes induced by SARS-CoV2 may have a physiological role in inducing immune responses. Immunization of mice with exosomes from SARS-CoV2 infected and vaccinated LTxRs not only induced SARS-CoV2 spike specific antibody but also resulted in inflammation and lung lesions in the immunized animals.

20.
Iranian Journal of Pharmaceutical Research ; 21(1), 2022.
Article in English | EMBASE | ID: covidwho-2033387

ABSTRACT

Donepezil hydrochloride is an acetylcholine esterase inhibitor studied and approved to treat Alzheimer’s disease (AD). However, this drug can have positive therapeutic potential in treating different conditions, including various neurodegenerative disorders such as other types of dementia, multiple sclerosis, Parkinson’s disease, psychiatric and mood disorders, and even infectious diseases. Hence, this study reviewed the therapeutic potential of this drug in treating Alzheimer’s and other diseases by reviewing the articles from databases including Web of Science, Scopus, PubMed, Cochrane, and Science Direct. It was shown that donepezil could affect the pathophysiology of these diseases via mechanisms such as increasing the concentration of acetylcholine, modulating local and systemic inflammatory processes, affecting acetylcholine receptors like nicotinic and muscarinic receptors, and activating various cellular signaling via receptors like sigma-1 receptors. Despite many therapeutic potentials, this drug has not yet been approved for treating non-Alzheimer’s diseases, and more comprehensive studies are needed.

SELECTION OF CITATIONS
SEARCH DETAIL